Linear maps preserving products equal to primitive idempotents of an incidence algebra

نویسندگان

چکیده

Let A, B be algebras and a∈A, b∈B a fixed pair of elements. We say that map φ:A→B preserves products equal to b if for all a1,a2∈A the equality a1a2=a implies φ(a1)φ(a2)=b. In this paper we study bijective linear maps φ:I(X,F)→I(X,F) preserving primitive idempotents I(X,F), where I(X,F) is incidence algebra finite connected poset X over field F. fully characterize situation, when such φ exists, whenever it does, either an automorphism or negative I(X,F).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

متن کامل

Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.09.002